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Science Drivers for Neutronics

~10-20 cm 3-8 m radial

4-5 m height

 Spatial resolution

— To resolve the geometry

e 10912 ynknowns
* mm? cells in a m3 vessel

— Depletion makes it harder

BWR and PWR cores have similar
dimension, but much different

) Energy resolution compositions and features

1.E+03

— To resolve resonances
¢ 10%° unknowns
* Donein 0D or 1D today S 1 E+01 3 4E07

* Angular resolution

— To resolve streaming
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CASL Test Problems

» CASL AMA Focus Area has defined 10 test problems
that drive requirements for Core-Simulation L

— Required in order to do Challenge Problems /

* VERA-CS for FY12 is targeting the first five % /
v' 2D Host Zero Power (HZP) Pin Cell U
v" 2D HZP Lattice

v" 3D HZP Assembly |

2 HZP 3x3 Assembly Control Rod Worth %/

JPhysical Reactor Zero Power Physics Test (ZPPT)
 TH-feedback starts in problem 6

* Depletion starts in problem 8



Denovo Capabilities

- State of the art transport methods * Modern, Innovative, High-Performance
— 3DI2D, non-uniform, regular grid S Solvers
— 2D MoC solver option —  Within-group solvers
— Multigroup energy, anisotropic Py scattering * Krylov (GMRES, BiCGStab) and source iteration
~ Forward/Adjoint breconditioned CORCE)
— Fixed-source/k-eigenvalue — Multigroup solvers
— 6 spatial discretization algorithms - Transport Two-Grid upscatter acceleration of
* Linear and Trilinear discontinuous FE, Gauss-Seidel
step-characteristics, theta-weighted *  Krylov (GMRES, BiCGtab)
diamond, weighted diamond + flux-fixup — Multigrid preconditioning
— Parallel first-collision — Eigenvalue solvers
* Analytic ray-tracing (DR) «  Power iteration (with rebalance)
* Monte Carlo (DR and DD) — CMFD acceleration (for MoC)
— Multiple quadratures Krylov (Arnoldi)

* Level-symmetric RQI with multigrid preconditioning

* Generalized Legendre Product
* Quadruple Range

Power distribution in a BWR assembly




Denovo capabilities - Advanced visualization, run-time, and

development environment
— multiple front-ends (HPC, SCALE,

 Parallel Algorithms Python-bindings, core-neutronics)
— Koch-Baker-Alcouffe (KBA) wavefront — Automated mesh generation from
decomposition reactor metadata and combinatorial

— Domain-replicated (DR) and domain- geometry

decomposed first-collision solvers — Direct connection to SCALE geometry

_ Multilevel energy decomposition and data (MG cross section processing)

a3 1 B R

_ : — Direct connection to MCNP input
Paralel/O buu n ILOIHDF5 _ through ADVANTG
T - M= — HDFS output directly interfaced with
LOANICH LT T Tk | L Vislt

— Built-in unit-testing and regression
Core Neutronics Package in VERA Toolset harness with DBC (353 separate tests)
2012-13 INCITE Award
The Solution of 3D PWR Neutronics Benchmark
Problems for CASL, 19 MCPU-HOURS

— Emacs-based code-development
environment

2010-11 INCITE Award — Support for multiple external vendors
Uncertainty Quantification for Three - BLAS/LAPACK, TRILINOS (required)
Dimensional Reactor Assembly Simulations, 26 )
MCPU-HOURS BRLCAD, SUPERLU/METIS, SILO/HDF5 (optional)

2010 ASCR Joule Code *  MPI (toggle for parallel/serial builds)

2009-2011 2 ORNL LDRDs *  SPRNG (required for MC module)

PAPI (optional instrumentation)



Discrete Ordinates Methods

» We solve the first-order form of the transport equation:
— Eigenvalue form for multiplying media (fission):

Q- Vi(r,Q, E) + X(r, E,T)(r,Q, E) =

/dE’/ dQ Y (r, Q- Q, E' — E, T)y(r,Q, E )+
47

1@/@5’/ dQ vYe(r, B, T)Y(r, ¥, E)
k 4m At

— TH coupling comes through the temperature-dependent
material cross sections



Discrete Ordinates Methods

- The S\, method is a collocation method in angle.
— Energy is discretized in groups.
— Scattering is expanded in Spherical Harmonics.

— Multiple spatial discretizations are used (DGFEM,
Characteristics, Cell-Balance).

Ly) = MS¢ + Q
¢ = Dy

 Dimensionality of operators:
t = Ng x N X Ny X Ny,
n=Ng X N.x Ny, XN,
mxn)(nx1l)=(Mmxt)(txt)(tx1)+(nx1)



Degrees of Freedom

* Total number of unknowns in solve:

unknowns = N, X N, X N, X Ny X Ny,

* An ideal (conservative) estimate.

N, = 238
N.=1 x 10’
N, =4
N,, = 16
N, = 288

unknowns > 4 x 10°




Traditional S, Solution Methods

- Traditional S solutions are divided into outer iterations
over energy and inner iterations over space-angle.

* Generally, accelerated Gauss-Seidel or SOR is used for
outer iterations.

* Eigenvalue forms of the equation are solved using
Power Iteration

* In Denovo we are motivated to look at more advanced
solvers

— Improved robustness
— Improved efficiency
— Improved parallelism



Reformulating the Problem

o" 1 = DL (MS¢™ + q) operate by DL-' to get Source lteration

n+1 B n which is really fixed-point (Richardson)
L =T —-A)z" +b iteration
I-— A =DL 'MS iteration matrix for Source Iteration

put in form Ax = b, we can use non-

(I — DL_lMS)¢ — DL_lq stationary iterative methods (Krylov
subspace) to solve this linear
problem

The inversion of L is done using a wavefront solver that is
implemented by solving for ¢ in the direction of particle flow >
Transport Sweep.



Krylov Methods

* Krylov methods are more robust than stationary solvers
— Uniformly stable (preconditioned and unpreconditioned)

 Can be implemented matrix-free

* More efficient o
S

— Source iteration spectral radius ,0(0)6 — ;6

_ Gauss-Seidel spectral radius  p(0)e = (T — Sp) 'Spe

* There is no coupling in Krylov methods
— Gauss-Seidel imposes coupling between rows in the matrix

— Krylov has no coupling; opportunities for enhanced
parallelism



Physics Dictates Convergence

« The Gauss-Seidel spectral radius for uniform graphite is 0.9812 = slow
convergence

 Systems that are block-dense in energy are sparse in energy-space-angle

* Ideal candidates for Krylov methods

Iron-D20-Graphite block energy S matrix Iron-D20-Graphite energy-space-angle S matrix
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Multigroup Transport Problem

* Using Gauss-Seidel requires the solution of G within-
group equations (using Krylov iteration) in each GS
iteration

* Alternatively, the full energy system can be solved by
Krylov iteration (T=DL"")

(I - TMS)¢ = Tq

Ty ... 0] [M ... 07]T[Seo --- Soc]\ [¢] [
I=1o =~ ofjo ~ of: o =
0 0 Tgl|0 0 M| |[Se ... Scc|/ |

Toqo |

NNel'tel



Eigenvalue Problem

* The eigenvalue problem has the following form
(I—TMS)¢ = %TMXngb

 Expressed in standard form
Ax = kx
A=(I- TMS>_1TMXfT r=¢ Energy-dependent
A=f" (I— TMS)_lTMX xr = ngb Energy-indepedent

* The traditional way to solve this problem is with Power
Iteration



Advanced Eigenvalue Solvers

» We can use Krylov (Arnoldi) iteration to solve the
eigenvalue problem more efficiently

yk _ Avk
: : k _ T, k
Matrix-vector multiply and sweep 2" = TMyf" v

Multigroup fixed-source solve (I — TMS)y* = 2"

- Shifted-inverse iteration (Raleigh-Quotient Iteration) has
been developed (using Krylov to solve the shifted
multigroup problem in each eigenvalue iteration)

(I-TM(S+ puF))¢ = (A — p)TMF¢

\ . 4

~"

block-dense



Solver Taxonomy

The innermost part of each solver are
transport sweeps

y=Tz=DL 'z
N——"

Ly =2

"It's turtles all the way down..."

Eigenvalue Solvers

Power iteration
Arnoldi
Shifted-inverse

Multigroup Solvers

Gauss-Seidel
Residual Krylov
Gauss-Seidel + Krylov

Within-group Solvers

Krylov
Residual Krylov
Source iteration




KBA Algorithm sweeping in direction of particle flow
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Parallel Performance

Angular Pipelining

 Angles in x z directions are pipelined

* Results in 2xM pipelined angles per octant
 Quadrants are ordered to reduce latency

B 2M B

6 angle pipeline (S,; M = 3)

‘max = 9N Br + P+ Py — 2

s




KBA Reality
0.6 |
KBA does not achieve closeto | | i
the predicted maximum
0.4 — T~ _
—— MaxB =5 Ll —-
o— - Measured B, =5
I~ _— MaxBK=4O 7]
¢— — Measured B, =40
02 _
O 1 | 1 | 1 | 1
0 1000 2000 3000 4000

n (cores)

- Communication latency dominates as the block size becomes small

* Using a larger block size helps achieve the predicted efficiency but,
— Maximum achievable efficiency is lower

— Places a fundamental limit on the number of cores that can be used for any
given problem



Efficiency vs Block Size

Deviation from Maximum
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Overcoming Wavefront Challenge

* This behavior is systemic in any wavefront-type
problem

— Hyberbolic aspect of transport operator

» We need to exploit parallelism beyond space-angle
— Energy
— Time

* Amortize the inefficiency in KBA while still retaining
direct inversion of the transport operator



Multilevel Energy Decomposition

EEEEEEEEEEE! EENEEENEEREEEEEE The use of Krylov methods to solve
S mEEEEE * the multigroup equations effectively
SHE it decouples energy
T et : . — Each energy-group S, equation can be
EEEEEEEEEEE EEE ' swept independently
— Efficiency is better than Gauss-Seidel
&

48 doenaziem » 3 nets x 16 Blocks



Multilevel Summary

* Energy decomposed into sets.

» Each set contains blocks constituting the entire spatial
mesh.

* The total number of domains is

domains = sets x blocks

» KBA is performed for each group in a set across all of
the blocks.

— Not required to scale beyond O(1000) cores.
» Scaling in energy across sets should be linear.

* Allows scaling to O(100K) cores and enhanced
parallelism on accelerators.



Whole Core Reactor Problem

PWR-900 Whole Core Problem

- 2 and 44-group, homogenized| &
fuel pins |

- 2x2 spatial discretization per
fuel pin

» 17x17 fuel pins per assembly

» 289 assemblies (157 fuel, 132
reflector) — high, med, low
enrichments

 Space-angle unknowns:
— 233,858,800 cells
— 128 angles (1 moment)
— 1 spatial unknown per cell



Results

Solver Time
(min)

Pl + MG GS (2-grid preconditioning) 17,424 1 17,424 150.15
Pl + MG Krylov 17,424 1 17,424 52.99
Arnoldi + MG Krylov 17,424 1 17,424 23.62
Arnoldi + MG Krylov 17,424 2 34,848 12.81

Total unknowns = 59,867,852,800
Number of groups = 2
k.4 tolerance = 1.0e-5

» The GS solver cannot use more computational resource for a problem of this spatial size
«  Simply using more spatial partitions will not reduce time to solution
«  Problem cannot effectively use more cores to run a higher fidelity problem in energy

*  PI+ MG Krylov will scale with sets similarly to Arnoldi, they just use different outer iteration strategies



Strong Scaling on XT5

Strong Scaling

Optimized communication

gave performance boostto ==
100K core job,

number of sets = 11

‘

30.00
== Linear Scaling

Wall-Clock Time (m)

=~ Strong Scaling

0.00

100,000 125,000 150,000 175,000 200,000

Cores

+ Communication improvements were significant at 100K core level (using 11 sets).
 They do not appear to scale to 200K core. Why?
 Multiset reduction each iteration imposes a constant cost!



Scaling Limitations

Reduction Time [%] vs Sets Reduction Time [s] vs Sets

w—r—204x204 | 204 704 xK

- A X - (i A0

Redu

£

 Reduction across groups each iteration imposes a “flat” cost
» Only way to reduce this cost is to increase the work per set each iteration (more angles)
 Generally the work in space will not increase because we attempt to keep the
number of blocks per domain constant
« However, we were able to replace a global-reduction with a reduced-scatter that
considerably reduced the reduction cost per outer iteration



Improved Scaling on XK6

Solver Time (m)

Cores

» Constant number of blocks = 12,544
> 44 total groups/22 coupled groups

Full partitioning scales
well to 275K cores

Improved interconnects
+ reduce-scatter have
dramatically reduced
global reduction cost

Upscatter partitioning
more efficient at lower
set counts

Roll-over occurs
between 4 and 11 sets
(5 and 2 groups per set)
where serial work in GS
solver dominates



Peak Performance on XK6

30

% Peak

10
w——TAN Fu) ParDtonrg

ST ITAN-Upacatier Parttioning

0 50,000 100,000 150,000 200,000 250,000 300 000
Cores




GPU Sweep Kernel

Sweep Performance

11
10 T =s=cpru/xxe ).

?9 - +CPU/XI?6 (actual - hera) /
o3 =¢=GPU/TitanDev
c
o7 )/'/
o6
2
W4 — /
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1 s () e— &=

0 I T T T

1 10 Nodes 100 1000
Performance GPU Krylov multigroup solvers allow the
space-angle sweeps to be performed
Improvement XK6
; Fermi over all groups concurrently.
actors |deal for exploiting thread-based
XK6 / Interlagos 3.5 concurrency on GPUs
CPU\ XE6 /dual Interlagos 3.3 We do a space-angle sweep for all

groups on the GPU.



CASL Quarter Core Simulations ‘

» We have run (XT9) a set of
3-D Y4 core simulations on
real reactor models , ".’N‘

» Varying numerics d
parameters we found that it - W |

is feasible to run fully
consistent transport on 3-D
cores

— The problems run 1
— We get good solutions ©

 However...



Projections

Where we want to be

 Reproduce fidelity of 2D
calculations using consistent
3D methods

* Produce all state-points for a
depletion cycle in O(8 hours)

 O(72) state points per cycle

- Steady-state, coupled
Neutronics simulation with TH
feedback = O(10"°) unknowns

Where we are

« Assuming 2% peak, we can
solve 1.7x10'3 unknowns/hour
(XT5)

 This means we can solve a
much-reduced 3D problem (O
(10"3) unknowns) in 175 hours

 This assumes status quo on a
1PF XT5 machine



Projections

What this means

* To reach 2D fidelity at 3D we
need to solve ~104 x more
unknowns

 So to run all state points in a
full day at this fidelity using
existing code and methods
requires

~ 141 Eflops

However, there is hope

 Consulting with industry, a
fully consistent 3D calculation
in 1 week would be acceptable
(factor of 7)

» We can still gain very valuable
insight into challenge
problems without reproducing
full 2D fidelity (factor of
150-200)

* Yet, we still need >100 PF to
run a full depletion cycle



Conclusion

The final piece
» Utilize GPUs to get more efficiency out of the hardware

- If early projections hold, we can potentially get a factor
of 3-4 improvement by exploiting sweep kernels on the
GPU

* Further solver research (multigrid-in-energy) shows
promise for reducing iteration counts as well

* Getting a factor of 3-4 from GPUs means that a 30-40 PF
machine could allow fully consistent, 3-D neutronics
simulations that could be used to address CASL
challenge problems



Questions



One Group Iterations

Gauss-Seidel lteration in energy

g—1 G
Lkt = MS, ¢t + stgg,qs’;#l + Z MS,y0F +Q,
9=0 g=g+1

reduces to a series of one-group solves
(within-group inner iterations)

Lg@bg — Msgg¢g + Qg

up and down-scatter rolled into source

inners have the general form

Ly = MS¢ + ¢



MG Krylov Preconditioning

» Each MG Krylov iteration involves two-steps
— preconditioning: Gk — oF

— matrix-vector multiply: " 1! = (I — TMS)z"

* At end of iteration we must apply the preconditioner
one last time to recover w* 1

» We use a simple 1-D multigrid preconditioner in energy:

2 — G(22", v*M)
— 1-pass V-cycle



V-Cycle Relaxation

» We are investigating both weighted-Jacobi
(I—TMSp)z"" = TM(wS — Sp)z" + wv + (1 — w)z"
* And weighted-Richardson relaxation schemes

2" = wTMS2" + wv + (1 —w)z"
* Energy-parallelism is largely preserved

.................



Virtual Reactor Simulation

* Neutronics is one part of
a complete reactor
simulation

Multiphysics
Integrator




